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For the important special ca 2 arising when one takes for some
i P

ak
L i S el R o e e e ¥
m<n, Cnl‘ = C = and Cn 1? ) Chn 03 = =F =TF
and R S Chernoff-Savage (1958) obtained the asymptotic

normality of Sn with some restrictions on the growth rates of the first
two derivatives of ¢. The same results have since been proved by
Govindarajulu-Le Cam-Raghavachari (1966) and Puri-Sen (1971) with milder

conditions on ¢. A far-reaching generalization of these results is due

to Hajek (1968). 1In a remarkable paper, Pyke-Shorack (1968) provided an

———

TACOESIK o

alternative approach to the Chernoff-Savage theorems by considering the | yqs

; nee Bui
weak convergence of a two sample empirical process to a Gaussian DPYOCESS. juinaolucts :
R T Rt ——

This apprcach has had a very significant impact on research practices in

the area of nonparametric statistics and there now exists a substantial '”qumﬁﬂﬁ;i

body of literature devoted to stochastic processes arising in such pro- 'v.m%f"~ﬁhii

blems. 1In spite of this, however, techniques of neither the Pyke-Shorack
kind nor of the Chernoff-Savege kind have been applied to problems of the
regression type., The method of attack for such problem has for the most

part been along the lines of Hajek (1968), Puri-Sen (1969), Hoeffding (1973),

I to name a few, We have been able to obtain results of the type given in
Hajek (1968) both by the Chernoff-Savage approach and by a method involving
convergence of certain stochastic processes, The latter is given in this
paper; the former, together with some results on convergence rates is
published separately, (See Puri-Rajaram (1977))

As is well known, the classical weak convergence method, to be found,

for example, in Billingsley (1968) or Pyke-Shorack (1968) gencrally entail

securing certain bounds on the sample path fluctuations of the processes

involved, usually with the help of certain refined metrics, If the distri-

butions are allowed to vary a great deal, any analysis of the sample paths

can become extremely involved, Further, unlike statistics of the
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Kolmogorov-Smirnov type which are wmeasures of the maximum sample path
fluctuation, statistics of the regression type are weighted sums
involving ranks and any sample path behavior as such is not directly
relevant, Taking these factors into consideration, we have adopted an
approach which uses only the second order properties of the processes
involved, thus circumventing the need for sample path analysis,

It is well known that a second order process, that is to say a
stochastic process X(t) whose variance K(t, t) is finite for all values of
t, spans a reproducing kernel Hilbert space with kernel K(s, t) =
Cov(X(s), X(t)). We exploit the fact that linear rank statistics can be
approximated by elements of the Hilbert space spanned by suitably defined
empirical processes, In general, such a Hilbert space does not
characterize the process spanning it completely. However, the spanning
process if Gaussian, is completely determined by its Hilbert space, We
establish the asymptotic normality of linear rank statistics by proving
their convergence to a point in the Hilbert space spanned by a Gaussian
process. Integrals of the type considered here are used in a wide range
of applications; Parzen (1958), for example, has used them in his basic
work in time series analysis. But the application given here for a pro-
blem in nonparametric statistics appears to be new. Brown (1970) has
some interesting results on convergence in distribution of stochastic
integrals. The basic reference on reproducing kernel Hilbert spaces is
Aronszajn (1950). Yosida (1972) also has useful results on reproducing
kernels,

Our conditions on the score generating functions are the same as
those in Puri-Sen (1971), being somewhat stronger than those of Hajek (1968)
but less stringent than in Chernoff-Savage (1958). However, the centering

constant, By is used throughout in the place of E(Sn) used by Hajek. This,
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in addition to being easier to comiute, serves to unify the results of
Hajek (1968) and Hoeffding (1973). We also examine the asymptotic degeneracy
of S, and in this respect our results extend both the Hijek and the

Chernoff-Savage, Puri-Sen results.

2, Definitions and Terminology.

Let an, Xn°’ sigieil Xnn be a sequence of independent random variables

with continuous distribution functions F Fn2’ LA e an respectively,

el
Let Rni be the rank of hni among (knl, QU Ann), that is

Rni = (number of an S:xhi); 300 G e

We define a simple linear rank statistic by

a (R..)

n
(2.2} Sp = .z: Cni e ond
i=1

n
where, (Cnl’ oo Cnn)’ (an(l), v el an(n)) are known constants, Cni being
known as regression constants and an(i) as scores, One usually assumes
ah(i) to be generated by a known real-valued function ¢ defined on (0, 1)

in either of the following ways:

) a (1) = o(=2);  (®) & (1) = E g(ult))
(1)

n

where U is the ith order statistic among n independent random variables

distributed uniformly over (0, 1). We shall assume (2.2) (a), namely,

a (i) = (~3—), Extension to case (b) can be done in one of the several
n P\n+l

ways but has little to do with the techniques developed in this paper and
need not concern us, Thus, by (2.2) (a), we can write §, as

R
( ni
n+l’°’

ni @

n
(2.3) S,= L C
i=1

For a fixed x, we define the empirical distribution function

Hn(x) for the sample an, St xnn’ by




(2.4) H (x) = 2

where the "indicator function" I( ) is defined by

(2.5) X . <x)

A i 2L CCBR
ni —

ORI R
ni

We also define the combined sample distribution function by

n
3 1
(2.6) P (x) - BGa)=C FOF O
i=1
For the special case, m < n
S = i
s Vi = Cwm = w Come1 = ="
T R e R S e e

Pyke-Shorack (1968) consider the two-sample .empirical process defined by
<1 oy

(2.7) 1 (t) =¥n (F(CH(Y)) - FHTH(E)))

where Fm(x) is the empirical distribution function corresponding to the

sample (an, b o Xnm). They obtain the asymptotic normality of Sn

srresponding to the two sample cases (the Chernoff-Savage theorem) by

proving the weak convergence of Ln(t) to a Gaussian process and also its

convergence in some refined metrics, Thus for the general regression case,

that is, when Sn is defined by (2.1) or (2.3), it is natural to consider

the process defined by

| Oy (10, SHLTRY). - 1y (B ).

(2.8) L (%)=

n
n,c

i
Unfortunately this process is much too complex and classical weak conver-
gence methods entail a detailed study of the sample path fluctuations of

the process. lience, we will avoid this by basing our approach on the

second order behavior,




3. Stochastic Integrals of Second Order Stochastic Processes.

Let (X(t): t € T) be a real-valued second order stochastic process
with the kernel K(s, t) =E [X(s) X(t)]. Let (¥(t): t € T) be another real-
valued second order stochastic process with the kernel R(s, t) = E[Y(s) Y(t)].
We always assume that T is an interval on the real line,

Let T = [a, b] where a < b are real numbers, We define the second
order stochastic integral of X(t) with respect to Y(t) as follows. We
follow essentially Loéve (1963).

mth an b e e e = b

1 2 n+l —
Define the random step function

(3.1) IT Xl();)d ¥(t) = k?: X, (¥, ) - 5

where

o= A G 20 S0,
Then the stochastic integral (second order) of X(t) with respect
to Y(t) is defined by

3.2 X(%) & Y(r) = 1.4 m, £y 4 Yt
(3.2) J 3w axe) maxtlm_tkloj’xD() ()

if it exists, where 1.i.m, means limit in the quadratic mean.
Often we will need to define it as an improper integral on T = (a,b).
Then we take T' = [a,B], a < a < B < b and first define as before

(3.3) jT' X(t) @ ¥(t)

and then define the improper integral

(3.4) | I X(t) 4 ¥(t) = 1.i.m, I X(t) a4 Y(t)
T a-a LR
Bb

if it exists.




Remark 1. These integrals d-pend on the "increments" of Y(t) and

not directly on Y(t) itself,

The following theorem ensures the existence of such an integral.

Theorem 3.1. Let the second order stochastic process X(t) with the

kernel K(s, t) be independent of the "increments" of the second order process

Y(t) with the kernel R(s, t). Then the stochastic integral I X(t) 4 ¥(%)
T

exists in the rank of (3.2) (or (3.4)) if and only if

— — e

j Kis, s Als, &)
I Ko v

exists as a Riemann-Stieltjes (perhaps improper) integral,

Proof. See Lodve (1963).

Remark 2, Very often in applications, Y(t) will be a nonrandom

function g(t). Then theorem 3.1 reduces to the following

Corollary 3.2, The stochastic integral I X(t) a g(t) exists if

and only if J j K(s, t) d g(s) d g(t) exists as a Riemann-Stieltjes

(perhaps 1mprqper) integral.

Proof. Immediate from theorem 3.1.

The following property of Gaussian processes proves very useful,

Theorem 3.3: If Y(t) is a nonrandom function integration of a

Gaussian process with respect to Y(t) preserves normality.

Proof. See Loéve (1963).

4, Second Order Properties of Weighted Empirical Processes.

Let X o n2? S *+* be independent random variables with

the corresponding distribution functions F

nn’

F -o.’F

al e o

nn’

are continuous, We define

~ g
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A

%

1' A
(4.1) L B
'lrrl
Let C_,, *°*, C__ be known constants, We shall investigate the
nl 2 “hnn

second order properties of the two processes,

(4.2) X (t) = ~7l'n i§l (1(x ; < F;l(t)) - Fni(F;l (t)))

IN

1 &
- .2[51 (T(x_, Fnl(t) by
1=

e o ol
(4.3) guhg;éfmumms%un-%ygum,0<t<L

where s, > 0 is a2 normalizing constant and I( ) is defined by,

i >
Iy Xni

0 otherwise,

The process Xn(t) is, of course, the well known empirical process
and has been extensively studied, We shall closely study the process

Y (t). The process Yn(t) as well as the process L, c(t) defined in (2.8)
b

have been considered by Koul (1970) and Koul and Stemdte (1972) respectively.

Our approach, however, is significantly different,

Lemma 4.1: E Xn(t) = B Yn(t) = 0

i

(4.5) E[X(s) X ()] = K (s, t)

&

t iﬁF'(F' -F(F‘lt
g i ni‘’ n (s)) ni‘'n (%))

i=1

(4.6) E(Yn(s) Yn(t)]

Rn(s, t)

2

n
£
A .23 Cni
s_ i=1
n

(F o (F21(8)) A F (FTH(8) = 7 (F7N(s)) F_ (FTH(0))

nl* u

where for any two real numbers a and b, a A b = min (a, b),

i,

T A

e




Proof. Proof of E Xn(t) = E Yr{t) = 0 is obvious, Further (4.5) is

a special case of (4.6) and hence it suffices to prove the latter alone.

Without loss of generality let s < t, Let u= F;l(s) <V = F;l(t).

Then we have

(I(X

Cnicnj ni s0) - Fni(u)){x(xnj <v) - FnJ(V))}

. l n
Y (s)Y (t) = 5% Z
Sn i,j=1

n
e
El C T, sw - F (I <9 - F ,(v)]

=™

Z. C.i%ni {I(x

0 o i S B - B ) (IX L2 v) < Fnstv)l-

=L
5ol

On taking expectations, the expectation of the second sum vanishes and

is the first sum
E[(I(X,; Sw) - F (W) (I, < v) - F ()]

This establishes (4.6).

Next we examine the 12-convergence of the processes Yn(t).

Definition. A sequence Yn(t) of second order processes converges in L2

to another (second order) process Y(t) if and only if

I, (8) - (Bl = (ver (¥ (4) - Y)Y — 0

as n = + o, for each t,.

We then write

Ia

¥ (%) = X&)

or

”Yn(t) - Y(t)j| —> 0.




We next obtain criteria for 12 convergence of the processes Yh(t)

defined in (4.3).

Theorem 4.2, The second order processes Yn(t) with Rn(t) as their

kernel (defined by (4.3) and (4.6) respectively) converge to a second order

process Y(t) if and only if, for each t,

1 n m -1 -1
(4.7) mii: S5 E[égé ;E& cnicm‘j [I(xni <F (t)) - Fni(Fn (t))]
N—t-®

X [T < FLH8) - B (F(e))]

= f(t) exists,
Further, if (4.7) holds, the kernel of Y(t) is given by

(4.8) E(¥(s) ¥(t)] = R(s, t) = lim R (s, t),
Nt

In statistical applications, we have a continuous sampling situation;

that is to say if m < n, we have, an =X Then the above

m? " *rm = Fme

theorem becomes a more precise

Corollary 4.3. Let n > m and the sequences be such that,

an = an, J < m, Then the process Yn(t) defined as before converges to a

process Y(t) with kernel R(s, t) = lim Rn(s, t) if and only if
oo
1 e -1 <1

M=+ nmi=1
Nt

2 Fni(Fgl(t)) Fni(F;l(t))]

exists and is finite for each t,

Theorem 4.2 is proved by a direct application of theorem A, page 469

of Loéve (1963). Therefore, we shall only prove corollary 4.3.
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Proof of Corollary 4.3. Note that by the hypothesis,

 SRE T R

Bl

m
o me 2_3 Fn.

;1 ni
could be different. Also, C_. may not equal C , and s and s could also
ni il 'n m

n
, m<an. But F a = DF . endF =
Lo n nlnl m

be different.
In order to simplify the notation, we shall write u = F;l(t) and

v = F;}(t), Then

(4.10) Yn(t) Ym(t)

Loass b €y (Tpy S W) = By (WA S V) - F_ (V)

IA

w) - F () (10,

IA

v) - Fmi(v))

ql
& 2 G 0 LI g s BT, € v = B {¥))
snsm i¥j ni mj ni ni mj nj
where we have used the fact that X . =X . and F , = F , for i < m,
nl L ni ml e

Observe that:

(i) When i 4 j, I(Xmi < -) and I(ij < +) are independent, Hence

E[[I(Xni <u) - Fni(u)] [I(an <v) - ij(v)]] = 0.

(ii) When i = j,

(4.11) (1% S W) - F ()] (1K <v) = F (V)]

"

I(xni <u) I(Xni < w}) - Fni(v) 1(xn. < u)

1

u

Fni(u) I(Xni <v) o+ Fni(u) Fni(v)'

In (4.11) for the first term,

E[I(Xni < u) I(Xni <v)) = Fni(u A V) = Fni(u) A Fni(v).

Taking expectations in (4,11), we get

e T [T G T - T P AT




(4.12) E([I(X; <) - Fni(u)][l(xni <v) -F .V
= F () AF (V) - F i) F . (v)

- -1 - = s
= F (FTN) A Py (F(8) = F (F2N(8)) F_ (EN(8)).

Thus by taking expectations of (4.10) end substituting (4,12) and (i) we

get the expression in (4.9). An application of theorem 4.2 proves the

corollary.

5. Limit Distributions of the Processes Xn(t) and Yn(t).

Since Xn(t) is a special case of Yn(t), it suffices to establish.the

results for the latter, We have the following theorem:

Theorem 5.1. For the processes Yn(t), let

(i) conditions of theorem 4.2 (or of corollary 4.3) hold; and let

2% =1 1
0 ¢ e e b O

Then Yh(t) Eg—> Y(t) where Y(t) is Gaussian with the kernel

Bis, t} = " 1Iim R (s, %)
nestss

Proof. L2-convergence and the convergence of the kernels are immediate
consequences of condition (i). It suffices to prove the asymptotic normality
of the finite dimensional distributions of Yn(t).

Let tl’ t2, L tk be any fixed elements in T, Consider the random

vector (Yn(tl), ol Yn(tk)).
We use the Cramer-Wold criterion,

Let a,, -, & De arbitrary constants, It suffices to show that

k
{5:1) 2 8, Y(tj) is asymptotically normal,

J:l




To simplify the notation, we write

-l A
= Fn (tj), B Fs sae g

Then

(5.2) > a; ¥(t,) = 2 8 {2 E[I(x, <uy) - Fri(u5)])

=1 J=1 i=1 ®y J
> _ni [E a [1(X LpSuy) =il (u Y,
i=1 ®p J=1 J oAl
Let ani =‘Jh Cni . Observe that
n
£5.3) o, = 0(1) in n,

Thus we can write,

n k
(5.4) f a; X(t,) = Jn i'=21 a, {fl o [I(X; <uy) - Fi(u)ly .

In (5.4), observe that by (5.3), each random variable

o E a [I(X i S“J-) - Fni(uj)]

ni $e1 J

is bounded,

Let
(5.5) S a2 Va.r{ga[l(x <u,) -F . (u.)]
5. cni . n- J—l - i j ni j }

and

B0 R
(5.6) op= 2 0p;-
i=1
k
Then by the bounded Liapunov theorem, 2 &,3 Y(t ) is asymptotically -

2 =4
normal provided o, =+ ®; if not, it is degenerate, 1In any event, Yn(t) is

asymptotically normal, possibly degenerate. We shall examine degeneracy

more closely in section 8.
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6. Asymptotic Normality of Certain Stochastic Integrals of the

Processes Xn(t) and Yn(t).
In this section we consider the stochastic integrals Xn and Yn given by

1 X

(6.1) Xaw jo X (1) o'(t) ac(t)
and &
(6.2) Y = gl Y () o' (t) at
where
n
(6.3) c(t) = e (F;l (t))
j=1

and ¢ is a known function.

In the next theorem we obtain bounds for the variances of Xn and Yn.
This in turn will enable us to prove the asymptotic normality of Sn defined
in (2.1). The variance bound for Y is also of independent interest because
it gives a condition on ¢ for the process ¢'(t) Yn(t) to possess kernels of

the so-called Hilbert-Schmidt type, uniformly in n,

Theorem 6.1. Let Xn(t), Yn(t) and their corresponding integrals X and

_— e —_— —— —

Cni 1
(a) max IE——I = O(=
IKi<n "n n

(b) there exists § > O such that for some K (generic)

lo'(8)] < K(e(1 - £387/2, 0 <t < 1.

Then

. 2
(6.4)  Var ¥, < o(1) [Jz lo'(8)] (R, (%, ©))%/%at)® < % s

and

1 2
(6.5) var X_ < 0(1) [JO lo'(1)] (K (t, £))Y2at)® < %é go™hs,
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In (6.8) observe that,

-1
DET (F (3 <2

and
0<1- Fni(F;l(t) £ 3.
Thus
§ o5 ot
(6.9) R (t, t) <0(1) 2 .El F;(F (1)) = 0(1)t
=
and
T -3
(6.10) R (t, ) <0(1) £ 'El (1 - Fp (F 7(£))] = o(1)(2 - t).
1=
Also,

1 o
€22 ] (w0 e (o

1/2
- jo (Ry(t, 1))

First consider

1L

2o (tyat jl/e[Rn(t, £)Y2 1 (tyat .

IA

1/2 1/2
IJ/ (Ry(ts )56 (4)at) < 0(2) | 2 e K(t(1 - +))°" > 2as
9 0

1
<K J go=s (%)5'5/2@ - % 23/2-28
0

using (6.9) and assumption (b).

Similarly, using (6.10) we get
ik

&

Combining the two, we have (6.4), The proof of (6.5) is similar.

2 2-2
L [By(8 ]2 Jgr(w|ar < K 23/2-20,

We are now in a position to prove the following theorem.

Theorem 6.2, Let Xn(t), Yn(t), X and Y be as defined earlier. Let

the following conditions be satisfied:

(a) 1lim E(Xm(t) X (t)) and 1im E(Y (t) Yn(t)) exist and also
m, N=sto = My Nteo ”

finite for almost all t,




lc, ;! 1
1 $ (b) max ——— = O(=).
lSiSn n n

-3/2
(e) Jo'(t)] <K (t(2 - t)]6 3/ for some § > O and a generic constant K.

1 Then, given ¢ > O, there exist Gaussian random varisbles X and Y and a

{

? positive integer no such that, n > no entails
; (6.12) I%, - ¥ <e

| and

Remark. Condition (a) can be replaced by lim Kn(s, t) = K(s, t)
Nt
where Kn(s, t) = E(Xn(s) Xn(t)) and condition of corollary 4.2 for Yn(t).

Then it follows from Shorack (1973) and our corollary 4.2 respectively

that Xn(t) and Yn(t) converge in L, to Gaussian processes X(t) and Y(t).
' We examine these conditions more closely in section 8.

Proof of Theorem 6.2, Consider Yn(t). By theorem 4.1 (or

corollary 4.2) and theorem 5.1, Yn(t) —j£;> Y(t) where Y(t) is Gaussian with
kernel

(6.14) R(s, t) = 1lim R (s, t)
N+ 4

M

e S B O (R () - r i), s s b

= lim lg
s
n

Let
iL

(6.15) Y = f Y(t) o' (t) at,
0

IS —————

Var Y - Jl ‘]'l ®'(s) '(t) R(s, t)ds dt
0%

h
< {jo lo'(8)] (R(t, 1))YPa)®

- ([ um o] (e )Yy

—
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1
< {lim inf J |¢'(t)| [Rn(t, ﬁ)]l/zdt]e < 4+ o ,
N—to 0

Observe that by theorem 6,1, Var Y is finite uniformly in n,

Thus

i
% = ¥ = ] (%0 - (0 o (vt

= Il flx (t) - Y(t)|| |@'(t)|dt —> O as n =+ =
because ”Yn(t) - Y(t)]| o' (t)] —2—> 0 and is dominated by the integrable
sequence,
(B + 1O [ (2)] .
Thus,
HYn - Y| < e for n sufficiently large.
The proof of ”Xn - X]| < € is similar. X can be taken to be,

5]
3 [ xe) o1(8) ac(s)
Jns. 9

n

where X(t) is Gaussian with K(s, t) = lim Kn(s, t) and
DN—rtco

& -1
c(t) = 2 C, F  (F 7(t)).
j=1

T. Asymptotic Normality of Simple ILinear Rank Statistics.

We are now in a position to prove the asymptotic normality of the

statistic, S , defined in (2.1), namely

=

ni
By 2 C.opls®) .

n

N

=l

We make the following assumptions:

§-i-1/2

(a) |¢(i)(t)| < K(t(1 - t)) , 1= 0, 1; K, & being generic constants,
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(b) Xn(t) and Yn(t) satisfy cordition of theorem 4,2 (or

corollary 4,3),

Icn" i ) }

- = 0(=).
(c) lg-;n ——'(V&r Sn)17§ e

We then have the following theorem:

Theorem 7.1l. Let the independent random variables an, FOLE xnn with

——

continuous distribution functions Fnl’ ey Frln be such that conditions

(a), (b), and (c) above are satisfied, Then there exists & Gaussian random

variable S with mean O and variance 1 such that

8.~
(7.1) L 11/2 > S in probebility, Ver S§_# 0,
(Var Sn)
where
3
(7.2) My = jo a(t) a c(t),
n s
e}« _Zl Cpi Foy(F7(0)).
1=

Further, variance of Sn can be replaced by the approximate variance,

T e S R 15 A

n
(7.3) si i i2=31 o Ani(xni) 5 1231 sr21i
| ¥here
i 1 2 o
| (1.0) Ay =5 B (G = )] (Kx < 9) - By (g (B 00)a8 ().

Proof. We can express the statistic Sn as

j 1

& (7.5) S, = Jo (p(;?i H (1)) ~  dc (t)

r where

: (7.6) C_(t) = Zn3 .. I{X . < F“l(t)) 1
n ni Ak =

i=1
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-1

1 - |
(7.7) H (%) = & El X, S F (L))

It is easily verified that by linear approximation, sn is expressible

as
(7_8) sn = “n + B.'LN + BEN + DlN + D2N + D3N

where | is as in (7.2),

(1.9 By = [ o) alo ) - o(v)

(110) By = [* (1,(8) - ) 9'(¥) ac()
(1) by -2 inn(t) o' (t) dc(t)

(1.38) Dy - j; (H(8) - %) o'(%) d(C_(t) - c(t))

(1.13) Dy = j; (05T Ha(8)) = 0(8) - (G2 (%) - ) (%)) ac_(¢),

We will show that,
(1) ,p,nl < + o,

(ii) -i—'-— (Bln + an) converges in probability to a normal random variable,
R :

(iii) Din = Op(Sn), i= l, 2, 3.

The following inequalities are immediate,

.14 C (t)) €£n mex JC .| H t)
(7 ) l (b)l = pye l m.' n( )

1l -~ -1
Thus |y | < |n max |C .| = (5} & AP AT (¢
ol <1 1<i<n ] nJo A e A R

IA
-~

‘1
max [C | J lq,(t)ldt < + o by assumption (a). This proves (i),
i<n  ni’ Jg
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Proof of (ii): Consider 13ln = j;’ »(t) d(Cn(t) - Cc(t)).

Integration by parts yields, f
(7.16) B, = (C (t) - c(t))p(t) |; - fl o'(t) (C (t) - c(t))dt.
0

Claim:

's‘n’ (Cn(t) - C(t)) ¢(t) —> 0 in probability as t —> 0 or 1.

Because an argument similer to that in the proof of Theorem 6.1 yields

Gan - v @HGE - SOy L 2 (1) B8]

n ~

< K& min [t8(2-¢)%72, £176(1-¢) 83,
t0<tgl whiéh proves the claim,

Next, observe that %-n- (Cn(t) - C(t)) = Yn(t) and Jn(Hn(t) -t) = Xn(t).

Hence,

B

1ln

= Yn and
n

oy
g n

n

where Xn and Yn have been defined in the preceding section,
By theorem 6.1, for each ¢ > O, there exist X and Y Gaussian such that,
X, - X <e/2 end ||Y_ - Y] <e/2.
Thus, ]|(Xn - Yn) - (X - X)) <e.
It remains to show that X - Y is Gaussian., We can write
Zn(t) = xn(t) - Yn(t).

By rearranging terms of Xn(t) and Yn(t), Zn(t) can be written as

n C
I - o s wlw) - i)




and conditions of the bounded Liapunov theorem are satisfied., Thus Zn(t)
is asymptotically Gaussian,

Further, X - Y is a linear mapping on Zn(t) and since X - Y is the
limit of X - Y, must be Gaussian., This establishes the asymptotic
normality of Xn - Yn.

We shall examine the behavior of X - Y more closely in section 8.
This proves (ii).

Here we have teken s = Var(X - Yn). Later we find an approximation

n

for s_.
n

Proof of (iii): We shall simplify the notation by writing x = F;l(t) and

1 n
B = £B 1%, < %)
1
¢ (x) = ;;g; Cpy IX ; < %)
- ?11151 Fra(®)
n
c(x) = El C_; Fi(x)
D
i e [ 7 B0 () ac (x).
Hence
D n
(7.18)  |-ie ln| S5 |2 o' (FyX e | <3 B |V |

i=1
(as Cn(x) assigns measure cni when x = xni and since Hn(x) L
Where,
Cni
(139) Vo = T 0.
Then, it suffices to show that

23 |v il —> 0 in probability as n —> 4+ =,
i_l
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This follows from "Particular case ‘.O," Loéve (1963), p. 241, if we show

n EIV .[a
that X 31 < + o, uniformly in n for some O < @ < 1, Take
izl n
a = 2/3; then
a/3 2/3
g E[V,, |l 2
% 3(8-3/2)
Z - —a' l_lTE[Fn(xni)(l G R ATy
lC -|2/3 25/3 1
< max —2L . Z [F(x( =B (x))) T ar (x
= 1<i<n si/B 2[5 J‘ n ni )

n
om § B [ (5, (-5 )
= -

0(1) Jj;[Fn(x)(l - Fn(x))]eé/}l an(x) < + o uniformly in n,

We have used the fact
2
G / 3

1
max e = O( ).
1<i<n | *n | TE

Thus D .= op(sn).

Next consider,

Dy, = [° (H(%) - B (%)) 9'(F () a(c (%) = C(x)).

-

Note that, given ¢ > 0, 0 < §' < 1/2, there exists a constant C(e, §') such

that,

IH (x) =& (X)l C(C 6')
! 12 < .
bl T e A

Thus on a set of probability > 1 - ¢,




s RS e

i

[, - 0]l (00| £ FEE8D (01 - B ()8

where g% = § - §' and §' < § is chosen.

Thus it suffices to show that,

 ee)  EEE) P g - RN ac,® - o) — o
E n Sn -

in probability.

AT e

We use the Liapunov criterion for degenerate convergence, (p. 275, t

B(i), Loéve (1963)),

K §%-1

- [ i@e-s e e ;'
: |
n §
K §%-1 i
i sni>3l Cz (F X Q- F (X)) :
Let |
Vn Cs %o i
| (R2n) m, el G T = BeE B
! n A
Then, :
‘
; 6%-1
(7.22) Jn - El Coy [F (X NI = (X))
i n
Er=

n

It remains to show% b 3 (vni - E Vni) —> 0 in probability. This will be
i=1 3

done if we show that for some a > O,

2 — 0.
ni

. o
(7.23) . 2 E|V
n i=1

We choose an @ > O such that, (1 + a)(s* - 1) > -1, (I.e., 0<a< 15:*).
n
|1+a

i
Then -T— .2 E|V
’ n i=1

ni
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Vn max|c_.| L« n
'_—S‘__m—| i B(r (X ;)(1 - F(xni)))(lﬂi)(é*-l)

n i=1

IA

ISQIH
sl

TE ) (L) (8%-1
(P s T | Em@a-rm) )@ (x)

oD [ @@ -2 N g ) 5 00—
n =

because the integral is bounded uniformly for all n. This proves (7.23),
Again we have used the fact

Vn max lC ,I &8 = 0(1).
1<i<n o

This establishes D, = o (s ). Consider,
n P n

Hy(x) - F (%)) ¢'(Fy(x))]ac (x).

n+l n

Djn=j lo(as B00) - o(Fy(®) - G

n+l 'n
We note the following: with

D3n
(7.24) i
i

it suffices to prove

(7.25) c op(l/fn).

1}

3n

Observe that

(7.26) |c

sal S0 [ [olly H,(0)) - o(F (1) - (B (x)

F (%)) o' (F (x))]dH_(x)
because of the fact

max o(%) :

1<i<n | 5. Jnl

I
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The proof that the right hand s:de of (7.26) is o,)(:,_-]-“) cen be found in
“Nn

Puri and Sen (1971), pp. 401-405. This proves theorem 7.1,

Variance Computation: Since by (ii) Din =0

p(sn), i=1, 2, 3, we can take

Sn to be the variance of B.‘Ln + B2n'

In order to simplify our notation, we write y = F;l(t), Observe that,

n
c(t) = B (AT h)) - T Coy Fyy() = O, sey.

n
Cn'
i1 1 j

J

With these transformations, we can write

© n

(7.27) By, + By = =] (3 $9) - Py () o' (Fy(y)) ac(y)

In

—-0]=

n
- j_ﬁl c, (I(X, <3) - F () ¢'(F (1) &F_(¥)

(X ;)

n

:
A e
;Ei H

() = 5| @) - B () o' (F(y) dc(y)

-cy | txgw

F s o' (F (y) aF (¥)

]
Sl
"M

Cos ftw{l(x <Y - Fu) o' (F(¥) & L(y)

J=1

1« " :
-5 2 % j_wmx $¥) - Py () o' (Fy(y) aF (y).

Thus,
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Sl

n -]
(1.28) Ay -3 B (0, - &) [atesy - r 0m o mar ).

nj

Thus, we can express Bln + BEn as the sum of independent random

variables, Ani(xni)’ If we write,

2
s .= Var A (X 5
ni ni‘ " ni
we can then take
n
52 = 2, 52,,
i ni

8. Asymptotic Degeneracy of Sj:

From the expression (7.8) for S > namely,

Sn [ Bln + BEn + Dln + D2n + D3n’
it is clear that we need only examine the limiting behavior of the terms
B, *+ By,. With the help of the expression (7.4) for Ani(-) we can express

Bln + an as a sum of independent random variables which would enable
standard tools from stability theory to be used, But a glance at the
expression for Ani(') suffices to convince us of the impracticality of the
situation, We shall adopt a different procedure using the variance
inequalities proved in section 6,

Clearly, s are only normalizing constants and we can replace Cni/sn
by Cni themselves but now with the condition,

1
(8.1) max |C_.| = 0(=).
1<i<n n

Then,
1 1
(8.2) X == [ X.(t) g'(t) ac(t)

Jh (0}
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1
(8.3) Y = Jo Y _(t) o'(t) at
where now
. X, <F 1)) -7 (7
(8.4) Yn(t)=i§l ¢, (T SF (1) - F,(F (%)),

In view of (8.1), Yn(t) is asymptotically either Gaussian or degenerate,
We next examine conditions for the degeneracy (or non-degeneracy) of
X =Y in the limit,
n n
Assuming that the distribution functions Fni possess densities

F'. = £ ., we can express
ni ni
*

1
8.5 K= ! ] t) dt
(8.5) j0¢<t) X

n

where

|

(8.6)  C'(t) = ( JEL ey,

n -1 -1 n
- El £ 5 (FL7(8))) [El C

We then have the following proposition.

Proposition, Let condition (8.1) be satisfied, With X and T defined

by (8.2) and (8.3) respectively, s, =X, - Y is asymptotically degenerate

whenever
n ' Z &
@1 s T (oo ) LN - By EHO) - 0

elmost everywhere on (0, 1).

It is, of course, assumed that ¢ and ¢' satisfy the same conditions as

before,

Proof. It is easy to verify that
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1 g T
B aX v ¥~ Io 9'(t) L e 1, < FH)

2 Fni(F;l(t)))dt.

<
5

i S n ' 33 A 64
[[[ 0@ i§1|9—§;tl - ¢l %1E (Bl 4 FN)) -

: . :
-1 — 3
i Fni(Fn (s)) Fni(Fn (t))] ds dt é
1 R : : ‘g
< l_l‘oltp'(t)l[‘Ell_C nﬁtz X Cni|2 Fni(Fnl(t))(l g Fni(Fnl(t)))]l/gdt]e-
1=

ey

By theorem 6.1, (variance inequalities) the last quantity above is

uniformly bounded in N. Now it is easily verified that (8.7) entails

e

Var Sn —> 0. This completes the proof,

Remark: A consequence of condition (8.7) is that whether S, is asymptotically

degenerate or not depends very heavily on the underlying distributions and 4
it may not be possible to secure nondegeneracy by any choice of the

regression constants Cni and the score generating function @. The difficulty

is that the so-called Kolmogorov-Smirnov bounds, namely

1 5 ¥ o1 i
P(s:p fnl El (1 S F (%) = F o, (F°(2)}] > @)

can be very small, when the underlying distfibutions are nonidentical. An
example following thecrem 2.11.8, p. 41 of Puri-Sen (1971), illustrates this

point,
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